FUTURE-DRAINAGE Webinar

Hayley Fowler (Newcastle University), Lizzie Kendon (Met Office), Murray Dale (JBA Consulting), Xiaodong Ming (Loughborough University) 24th November 2021

UK Research and Innovation

Met Office

🔢 🖩 Loughborough University

JBA

https://www.instagram.com/p/By3SerGnD Xi/?igshid=dopwsu601et2

FUTURE-DRAINAGE

Professor Hayley Fowler, Newcastle University

FUTURE-DRAINAGE

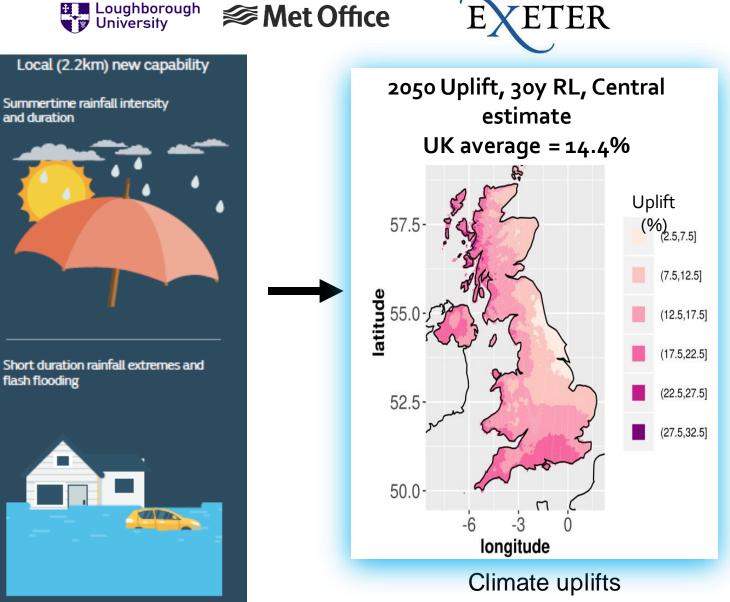
Natural

and duration

flash flooding

Environment **Research Council**

JBA


<u>Aim</u>: To provide revised rainfall uplifts for climate change in line with UKCP18, to assess the uncertainty in these rainfall uplifts and provide new guidance for urban drainage design and modelling surface water flooding in urban areas

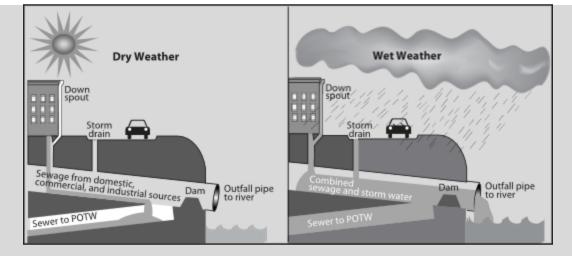
UK

CLIMATE

RESILIENCE PROGRAMM

In consultation with stakeholders, translated into information usable to UK water resource stakeholders for climate change adaptation

The Customer: Interests of stakeholders (Dale 2021)


Who are the stakeholders? water resource management, insurance, emergency services, etc.

Surface (flash) flooding, overcoming flood defences, leading to human casualty and property damage

UK: Boscastle flood of 2004

Europe: 2002 Gard flood (24 fatalities, 1.2 billion € damages) Historical: Johnstown flood 1889 (2200+ fatalities), 1975 Banqiao Dam failure and flood (85000+ fatalities); both dam failures after heavy precipitation

Combined sewage overflow, leading to water pollution, posing risks to public health and coastal environment

Emission of sewage water to sea is regulated in particular for the warm bathing season (**15 May – 30 Sep**): EU directives 76/160/EEC + 2006/7/EC, UK Statutory 2013 No. 1675

UK

CLIMATE RESILIENCE PROGRAMM

FUTURE-DRAINAGE webinar - outline

<u>Part 1:</u>

- UKCP Local projections through to rainfall uplifts Prof Lizzie Kendon, UK Met Office
 - UKCP Local
 - Method and assessing uncertainties
 - New uplifts
- Uplift guidance and stakeholder consultation Murray Dale, JBA
 - Guidance on use of rainfall uplifts
 - Managing uncertainties in the projections
 - Recommendation on required revisions to RED-UP tool.

UK

CLIMATE

FUTURE-DRAINAGE webinar - outline

<u>Part 2:</u>

- Impact of the revised uplifts on sewer flooding
 - Using uplifts to generate urban flood risk projections in 6 UK cities
- Using national RoFSW methodology Murray Dale, JBA
- Using fully dynamic urban flood models Dr Xiaodong Ming, Loughborough University
- Recommendations

UK

CLIMATE

Part 1: FUTURE-DRAINAGE rainfall uplifts

Current UK Guidance

Peak rainfall climate change allowances, for England and Wales

Parameter	1990-	2025-	2055-	2085-
	2025	2055	2085	2115
Peak rainfall intensity (preferably for small catchments	+5%	+10%	+20%	+30%

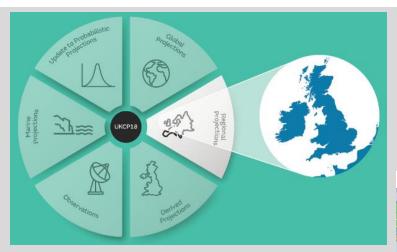
Environment Agency 2011 guidance (2011)

Change to extreme rainfall intensity compared to a 1961-90 baseline

Applies across all of England			Total potential change anticipated for 2080s			
Upper end estimate	+10%	+20%	+40%			
Change factor	+5%	+10%	+20%			
Lower end estimate	0	+5%	+10%			

UKWIR 2017 values								
North West UK	Central estimate	35%						
North West OK	High estimate	65%						
North East UK	Central estimate	20%						
NOTTHEASTOR	High estimate	50%						
South LIK	Central estimate	15%						
South UK	High estimate	35%						

UK CLIMATE RESILIENCE


PROGRAMME

UKCP Local climate projections through to uplifts

Professor Lizzie Kendon, Met Office

Thanks to: Steven Chan

What are UKCP Local 2.2km?

UKCP18 2.2km ensemble

- 2.2km resolution for UK
- 12 members
- Driven by 12km RCM
- Data for 1981-2000, 2021-40, 2061-80
- High emissions scenario RCP8.5

New set of 12 climate projections using a model as detailed as that typically used for weather forecasts.

Updated July 2021

New estimates of changes in daily and hourly extremes

- Storms
- Summer downpours
- Severe wind gusts

Supports UK risk assessments

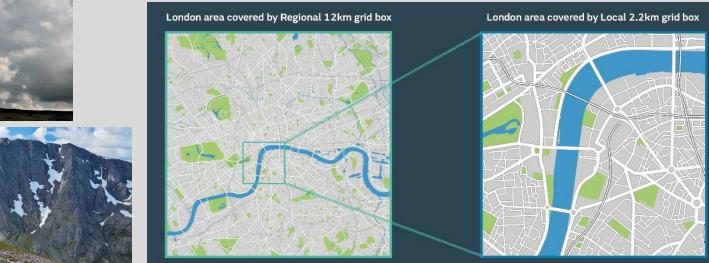
Hydrological impacts modelling e.g. flash floods

UK

CLIMATE RESILIENCE PROGRAMMI

Climate change for cities e.g. urban extremes

a model as r forecasts.

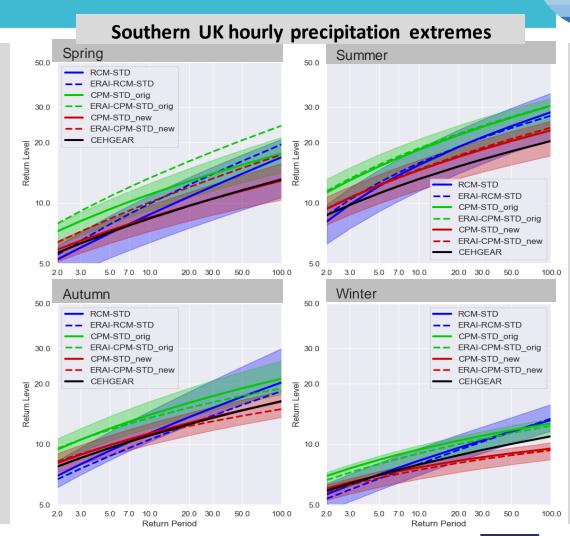

Local (2.2km)

The Local (2.2km) model better represents small scale behavior in the real atmosphere, such as convection.

Local (2.2km) better captures the influence of mountains, coastlines and urban areas, due to the high resolution.

Specification of urban areas is much more precise

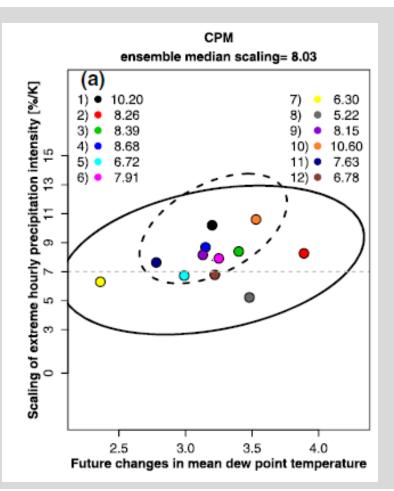
Local (2.2km) describes the types and extremes of weather for your local area over coming decades.



Present-day hourly rainfall extremes

UKCP Local (2.2km) provides credible projections of future changes in hourly rainfall extremes

- 2.2km CPM shows good agreement with observations, which are within ensemble spread (except high return periods in winter)
- 2.2km CPM captures the present-day rate at which extremes increase with return period unlike 12km RCM
- High return period extremes are overestimated in 12km RCM likely due to unphysical grid point storms

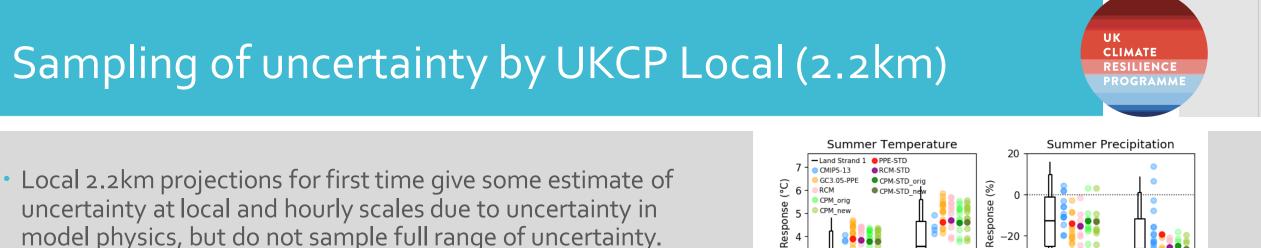

UK

CLIMATE RESILIENCE PROGRAMM

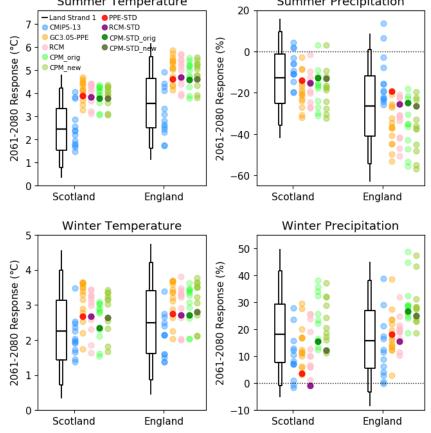
Calculating uplifts from UKCP Local

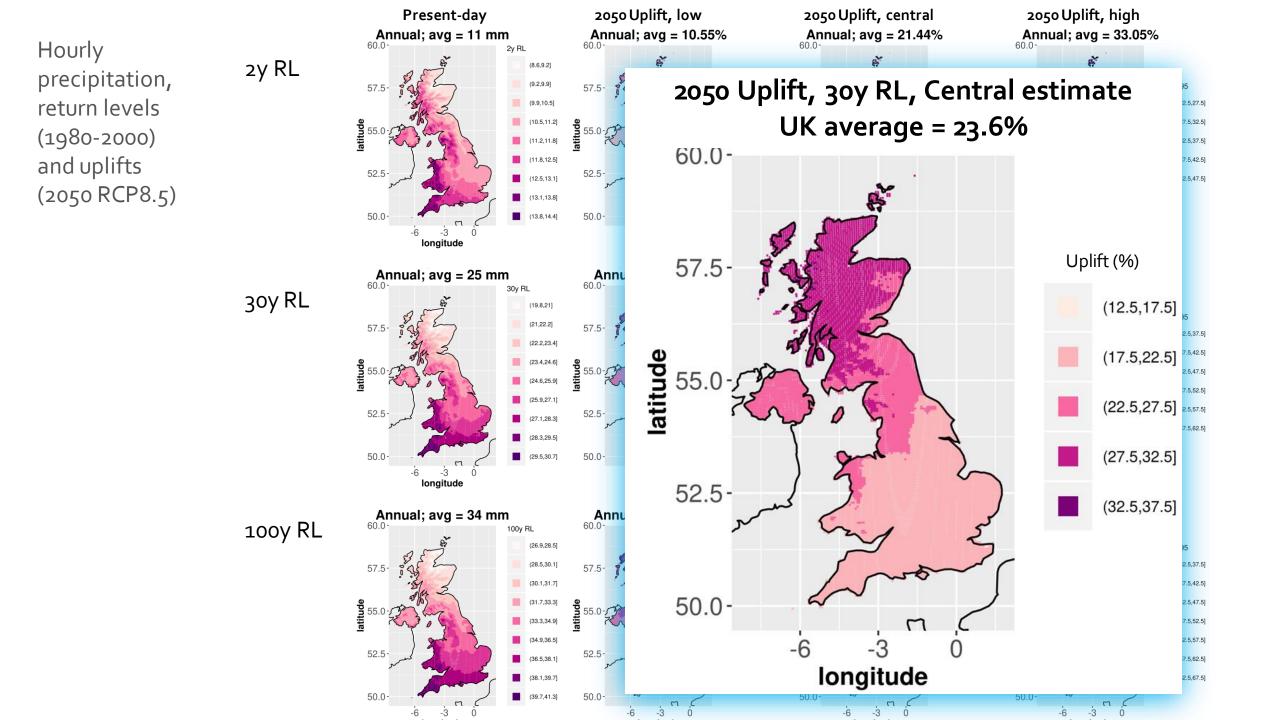
- Advanced spatial statistical model (Youngman 2018) used to produce robust and smooth estimate of return levels, accounting for local processes (i.e. orography, prevailing flow) and using all available model data.
- Spatial and temporal correlation in the data accounted for to some extent using experimental technique (Ribatet et al. 2012).
- There are two uncertainties attached to the return levels and uplift estimates, which are combined to produce **`central' and `high' estimates**:
 - Uncertainties in the extreme fit itself (for each ensemble member and time period)
 - Uncertainties due to the climate model ensemble spread (due to variation in driving model physics)

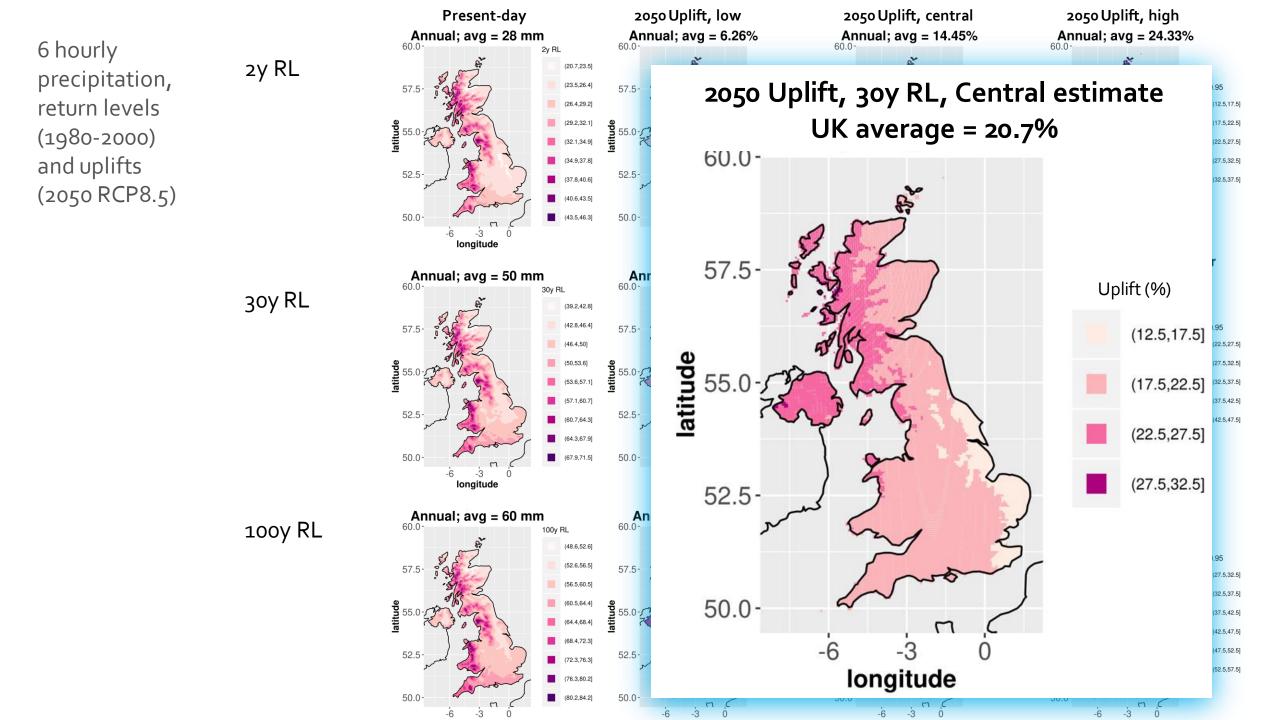
Scaling factor between dewpoint and extreme 1h precipitation intensity (Fosser et al. 2020). **Solid line**: total uncertainty (ensemble plus natural variability). **Dashes:** uncertainty due to natural variability for single ensemble member

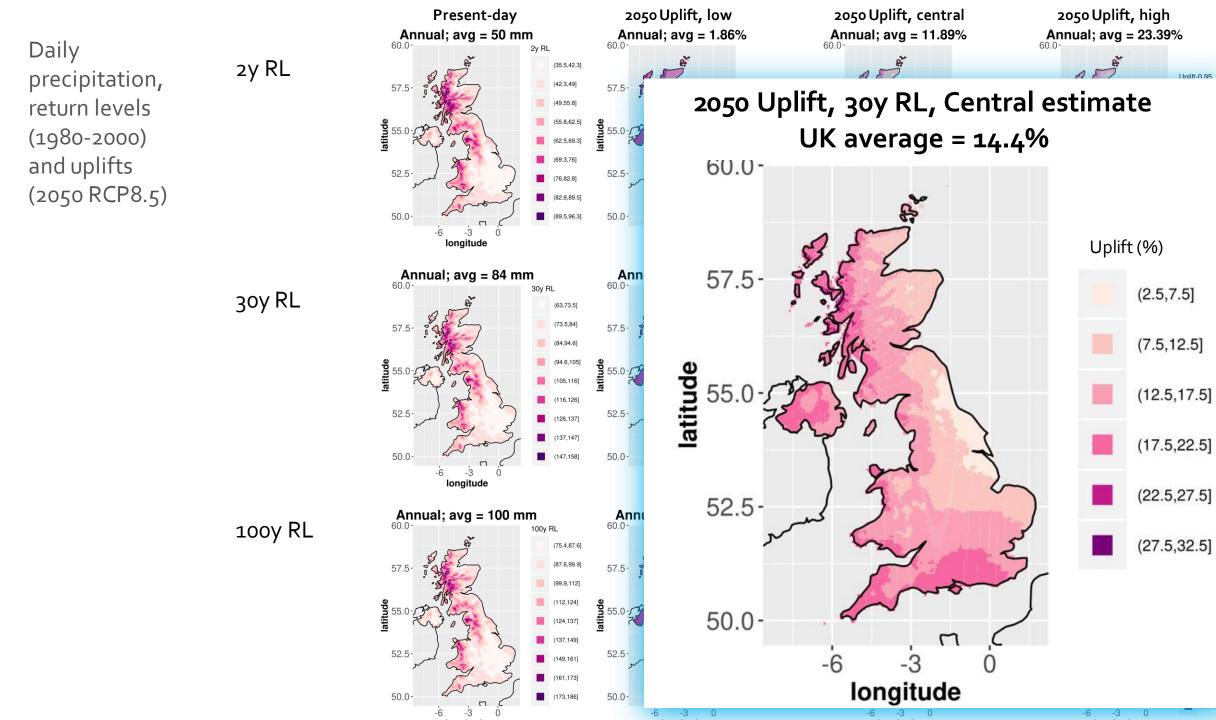


UK


CLIMATE RESILIENCE PROGRAMMI


- Local 2.2km projections only downscale Hadley Centre models that simulate relatively high levels of global warming.
- In summer, Hadley Centre models (yellow) sample warmer drier outcomes compared to CMIP₅ (blue).
- Unexplored uncertainties include the uncertainty due to emission scenario – RCP8.5 is high-end emission scenario, so diagnosed uplifts can be seen as the relative high case.




Projected changes to 2061-2080 for RCP8.5



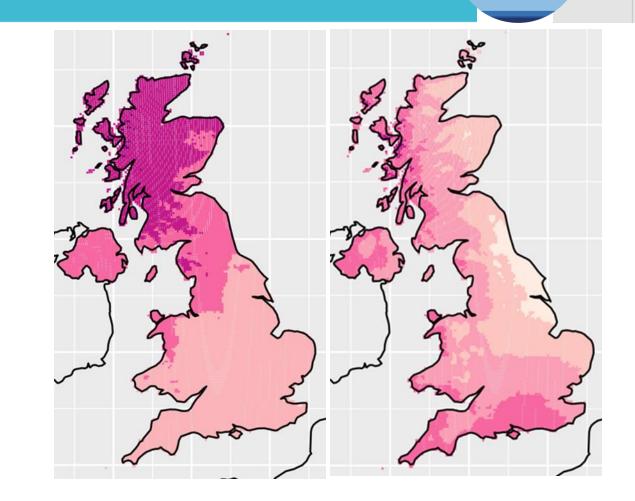
Uplift guidance and stakeholder consultation

Murray Dale, JBA Consulting

Guidance

- Guidance and uplift shapefiles released on 22nd July
- Details how to access the uplift shapefiles
- The format of the output
- How to apply the uplifts
- Broad comparison with 2017 UKWIR project results

UK


CLIMATE RESILIENCE PROGRAMME

https://artefacts.ceda.ac.uk/badc_datadocs/futuredrainage/FUTURE_DRAINAGE_Guidance_for_applying_rainfall_uplifts.pdf

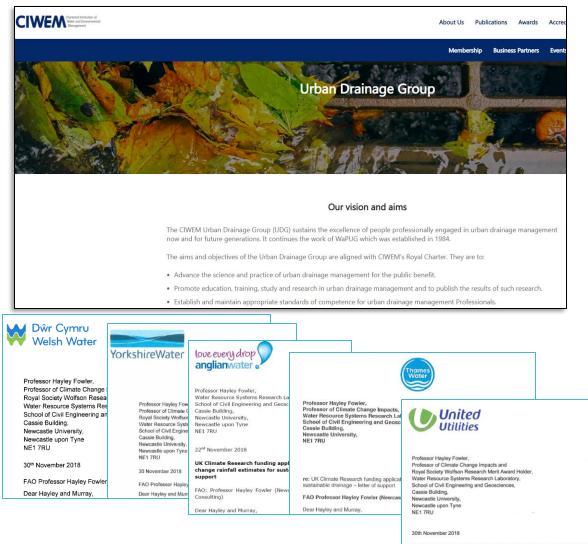
Guidance – headline messages

Uplifts differ by:

- Location
- Rainfall event duration
- Return period
- Time horizon (2050 and 2070)
- A central and upper estimate of change provided

UK

CLIMATE RESILIENCE PROGRAMM


Uplifts – consultation with stakeholders

Stakeholder workshop held in London on 26th September 2019

Paper presented at CIWEMUDG Annual Conference in Nov, 19

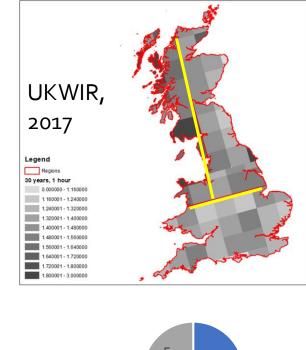
Approach agreed with stakeholders:

- Rainfall uplifts would be provided to supersede those produced by the UKWIR 2014-17 project
- New regional uplift groupings
- 2050 important time horizon for DWMPs (Drainage and Wastewater Management Plans
- Return periods of 30 and 100-years are useful and 200year return periods would be of interest if possible

FAO Professor Hayley Fowler (Newcastle University) and Murray Dale (JBA Consulting Dear Hayley and Murray,

UK

CLIMATE RESILIENCE PROGRAMM


Uplift regionalisation

Options put to stakeholders:

1. We produce uplift values shown in maps with 5% uplift increments across the country that are informed from the climate model output only.

2. We produce uplift values rounded to the nearest 5% for each Water and Sewerage company (WaSC) area (two for Scotland divided by river basin district*) in the form of tables.

Preference expressed for option 1 (78% of responders)

Option 1
Option 2
no response

Scottish Water Northumbrian Water Yorkshire Water United Utilities Dwr Cymru Welsh Water Severn Trent Water Anglian Water Thames Water Southern Water Wessex Water South West Water Northern Ireland Water Environment Agency SEPA

UK

CLIMATE RESILIENCE PROGRAMME

Uplift access

Main CEDA Site Datasets and Services MyCEDA Contact Us

User Registration

Please enter your details below and then select the "Next" button. Our policy on privacy and cookies ca can be found here.

Bold labels imply required fields

Please review the form fields in red

Title:	0	🗸	
Surname:	0		
Other names:	0		
Email Address:	0		
Telephone number:	0		
Discipline:	0	v	
Degree you are studying for:	0	•	
Supervisor's name:	0		
Institute Name: This field is required.	0		
Department:	0		
I am over 18	0		~
I agree to the CEDA terms and conditions	0		

cpm_uk_5km_2050_01hr_pr_002yrl.db	f
uplift_land- cpm_uk_5km_2050_01hr_pr_002yrl.pr	j

uplift_land-

uplift_land-

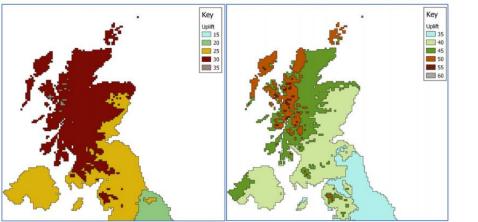
cpm_uk_5km_2050_01hr_pr_002yrl.shp

uplift_land-

cpm_uk_5km_2050_01hr_pr_002yrl.shx

2	Cate	gorized		
information	Value	1.2 up	olift_50	
Source	Symbol	1.2	easting	
💕 Symbology		1.2	northing	
be Labels	Color ramp Symbol	1.2	Uplift_5	
Diagrams		1.2	Uplift_50	
훳 3D View		1.2	Uplift_95	
Fields	V I	_	30	30.0000000000000000
Attributes Form	✓ ■		35	35.0000000000000000
	\checkmark		all other values	

UK CLIMATE RESILIENCE PROGRAMME


Uplift application

We do not recommend using results from individual grid cells, but to take results from a region (e.g. consider the Lake District as a whole, and consider what the range of values are across the region).

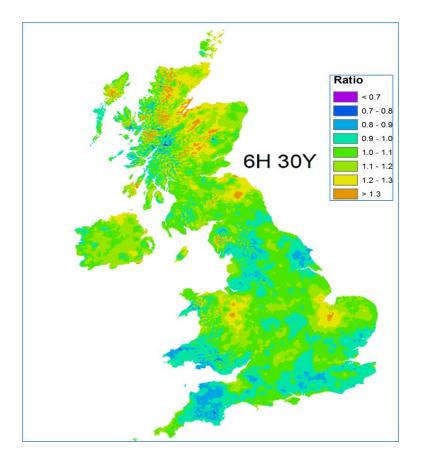
There are geographic features that give rise to local differences, but otherwise we do not expect results to differ significantly from one adjacent grid cell to the next.

If a location of interest is on the border of two uplift zones, we propose using either an uplift value that is an average of the two uplift amounts (e.g. if on the border between an uplift of 25% and 30%, use a value of 27.5%), or, if taking a more precautionary approach, use the higher of the two values.

In either case, we recommend that you document the option that has been taken so that there is a record justifying the value used.

UΚ

CLIMATE


Figure 2 - 1-hour, 30-year uplifts for Scotland for the central estimate (left) and high estimate (right)

Baseline data

The uplifts have been developed against a baseline period of 1981 – 2000. They are appropriate for use with FEH13 depthduration-frequency (DDF) data.

We are aware that a new version of the FEH DDF model will be released in the Spring of 2022, FEH22.

As the baseline data that are used to derive the FEH22 DDF model will change (i.e. become later in time), it may be appropriate to scale back the uplifts based on the change in the baseline data period, if the centre point of the data period differs substantially from the UKCP Local baseline centre point (1990).

UK

CLIMATE RESILIENCE PROGRAMM

Approximate comparison with prior research & guidance

UK CLIMATE RESILIENCE PROGRAMME

Table 1 – Approximate comparison of uplifts to the UKWIR 2017 values for 2050, 30-year return period.

	KWIR 2017 values	FUTURE-DRAINAGE Range				
0	KWIK 2017 Values	From	То			
North West UK	Central estimate	35%	15%	30%		
	High estimate	65%	35%	45%		
North East UK	Central estimate	20%	10%	30%		
	High estimate	50%	25%	45%		
South UK	Central estimate	15%	20%	25%		
	High estimate	35%	25%	35%		

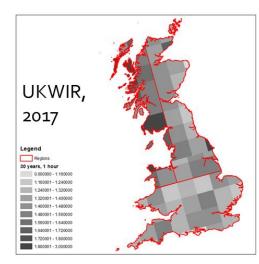


Table 1: peak rainfall intensity allowance in small catchments (less than 5km²) or urban drainage catchments (based on a 1961 to 1990 baseline)


Applies across all of England	Total potential change anticipated for the '2020s' (2015 to 2039)	Total potential change anticipated for the '2050s' (2040 to 2069)	anticipated for the			
Upper end	10%	20%	40%			
Central	5%	10%	20%			

Table 2: Peak rainfall intensity allowance

Region	Total potential change for 2100
East	35%
West	55%

Conclusions

- Spatial patterns of current return levels are different to uplifts
- Spatial pattern of uplifts differs between different durations
- In many locations the FUTURE-DRAINAGE uplifts exceed current guidance

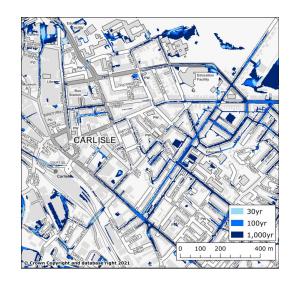
UK

CLIMATE

Questions

Part 2: Impact of the revised uplifts on sewer flooding

Professor Hayley Fowler, Newcastle University

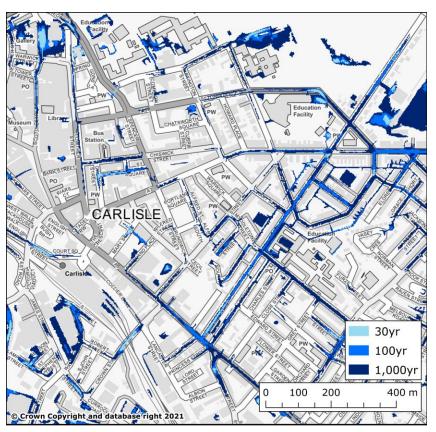

Part 2: Introduction

Aimed to compare outputs modelled using:

1.The RoFSW methodology, which is efficient enough to apply nationally,

2. Detailed hydrodynamic urban flood models that take into account the effect of continuous infiltration and drainage flow dynamics using a dual-drainage approach

3. Advise on whether more detailed physically-based models are needed for surface water flood predictions


Surface water flood modelling - JBA

Murray Dale, JBA Consulting

Risk of Flooding Surface Water (RoFSW) National-scale, present-day, surface water mapping used to assess flood risk. Comprised, in order of increasing preference:


- JBA's broadscale national JFlow® mapping
 - EA approved detailed local models from the private sector, Boosting Action for Surface Water (BASW) grants, Lead Local Flood Authorities (LLFAs) projects etc.

JBA provide the annual iterative update of the RoFSW to the EA. The national scale modelling and post-processing methodologies were adopted in this research to provide comparable datasets.

Study locations

- Carlisle Greater London
 - Greater Manchester
- Rhondda
- Tyneside

Climate Change Uplift Values

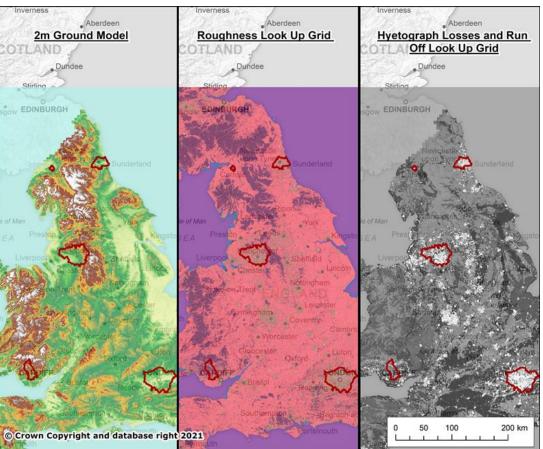
UK

CLIMATE RESILIENCE PROGRAMME

The uplift values used for each model area varied based on the following factors:

- Region
- Epoch / Allowance
- Return Period
- Storm Duration

Site Name Area		Reg	ion						30	-yr					
	Area	Area		1-hr Duration			3-hr Duration				6-hr Duration				
		1 & 3hr	6hr	2050s C	2050's UE	2070's C	2070's UE	2050s C	2050's UE	2070's C	2070's UE	2050s C	2050's UE	2070's C	2070's UE
Carlisle	United Utilities	WNC	WNC	25%	35%	30%	40%	20%	35%	30%	40%	20%	30%	30%	40%
Greater London	Thames	SE	SE	20%	35%	25%	40%	20%	35%	25%	35%	20%	30%	25%	40%
Greater Manchester	United Utilities	WNC	WNC	25%	35%	30%	40%	20%	35%	30%	40%	20%	30%	30%	40%
Rhondda	Wales	WNC	WNC	25%	35%	30%	40%	20%	35%	30%	40%	20%	30%	30%	40%
Tyneside	Northubria	WNC	WNC	25%	35%	30%	40%	20%	35%	30%	40%	20%	30%	30%	40%

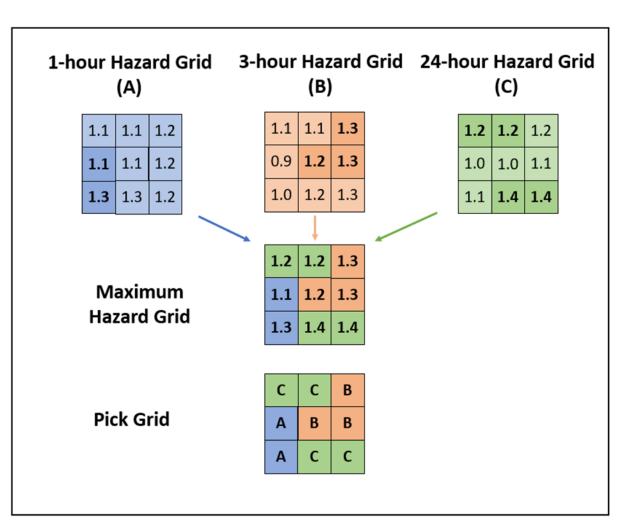

		Reg	ion						100)-yr					
Site Name Area		_		1-hr Duration			3-hr Duration				6-hr Duration				
	1 & 3hr		2050s C	2050's UE	2070's C	2070's UE	2050s C	2050's UE	2070's C	2070's UE	2050s C	2050's UE	2070's C	2070's UE	
Carlisle	United Utilities	WNC	WNC	25%	40%	30%	40%	25%	40%	30%	45%	25%	35%	30%	45%
Greater London	Thames	SE	SE	20%	40%	25%	40%	20%	40%	25%	40%	20%	35%	25%	40%
Greater Manchester	United Utilities	WNC	WNC	25%	40%	30%	40%	25%	40%	30%	45%	25%	35%	30%	45%
Rhondda	Wales	WNC	WNC	25%	40%	30%	40%	25%	40%	30%	45%	25%	35%	30%	45%
Tyneside	Northubria	WNC	WNC	25%	40%	30%	40%	25%	40%	30%	45%	25%	35%	30%	45%

Model set-up

Inverness

Retained model inputs:

- JFlow 7[®] Software
- 2m Model Resolution
- FEH 99 (uplifted to represent climate change)
- Ground Model
- Roughness Grid
- Hyetograph Loss and Run Off Grid



UK CLIMATE RESILIENCE PROGRAMME

Post-processing

UK CLIMATE RESILIENCE PROGRAMME

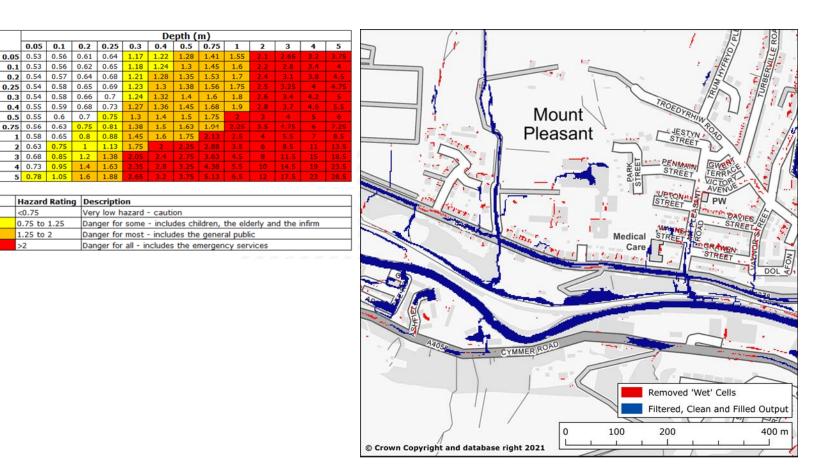
Combined Storm Durations Pick Grid Method

Threshold, clean & fill

Post-processing (2)

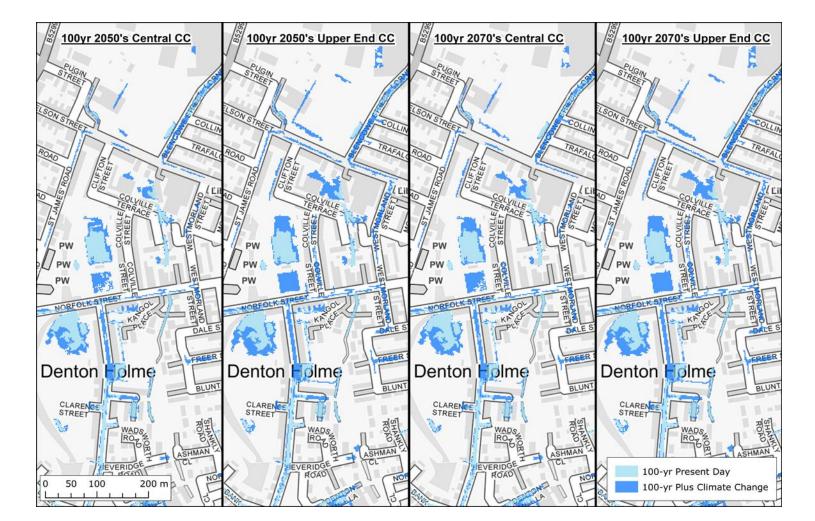
Threshold on Hazard Index 0.575

le l


4 0.73 0.95 1.4 1.63 5 0.78 1.05 1.6

<0.75

0.75 to 1.25


1.25 to 2

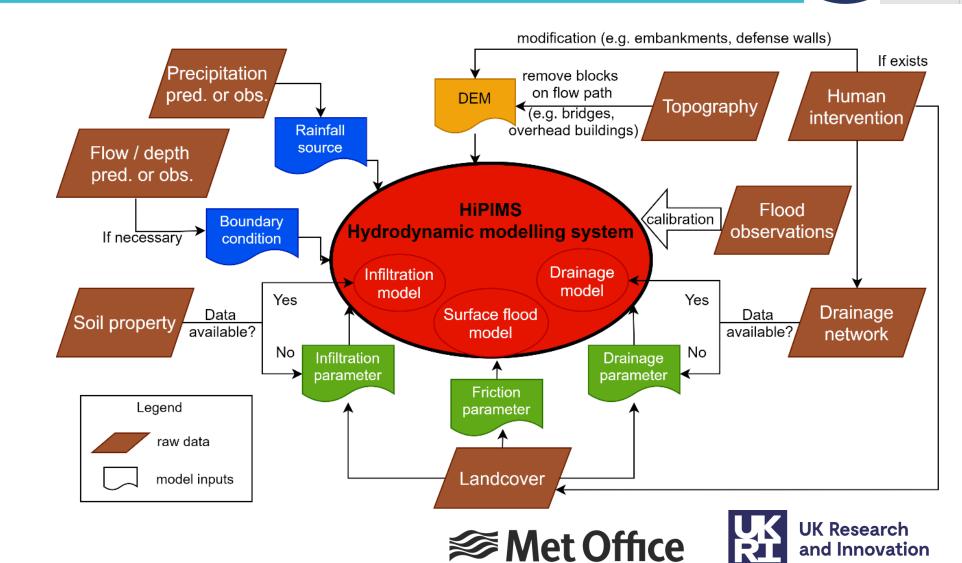
- Filled isolated 'dry islands' $\leq 48m^2$
- Removed 'wet' areas $\leq 96m^2$

UK


Results – Carlisle (100-year)

Results – London (30-year)

Results – Manchester (100-year)


	Depth (mAOD)			Hazard Index			Velocity (m/s)		
Location	RoFSW 100-yr Present Day	100 yr 2070's Upper End	Increase %	RoFSW 100-yr Present Day	100 yr 2070's Upper End	Increase %	RoFSW 100-yr Present Day	100 yr 2070's Upper End	Increase %
1	0.27	0.35	30.41	1.20	1.29	7.29	0.33	0.36	7.03
2	0.41	0.46	10.22	1.32	1.41	6.99	0.27	0.40	47.57
3	0.32	0.45	42.92	1.16	1.23	5.86	0.06	0.08	43.92
4	0.26	0.33	28.41	1.09	1.27	16.93	0.24	0.33	40.09
	Average Increase % 27.99		27.99	Average Increase % 9.27		Average Increase %		34.65	

Surface Flood Modelling Using HiPIMS

Dr Xiaodong Ming, Loughborough University

Urban flood modelling

- Extreme events
- Complex topography
- Large domain
- Human intervention
- Stability
- Accuracy
- Speed
- Flexibility

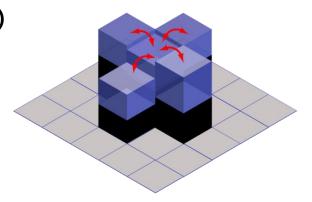
HiPIMS flood model

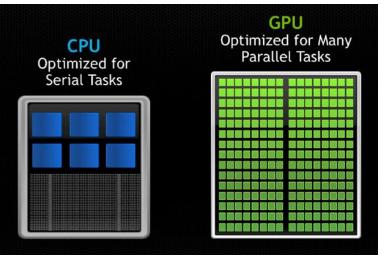
<u>High-Performance Integrated hydrodynamic Modelling System (HiPIMS)</u>

Fully physically based

• Governing equation is the full version of 2D shallow water equations

State-of-the-art numerical schemes


• Godunov-type scheme


Parallel computing: Multi-GPU acceleration

• CUDA/OpenCL

Improved numerical methods

- Surface reconstruction method (SRM) for slope source terms
- Fully-implicit scheme for friction terms

UK

• Data

- DEM: LiDAR DEM data (1m/2m) & OS DTM data (5m)
- Landcover: OS Mastermap (high resolution) & Land Cover Map Great Britain 25m
- Crowd-sourced photos
- Rainfall (NIMROD radar observation)
- Parameter (EA suggestion)
 - Infiltration: 30% reduction to rainfall
 - Drainage: 12 mm/h reduction to rainfall
- Parameter
 - Infiltration: unpaved land/paved land
 - Drainage on road surface : city centre/suburban region

UK

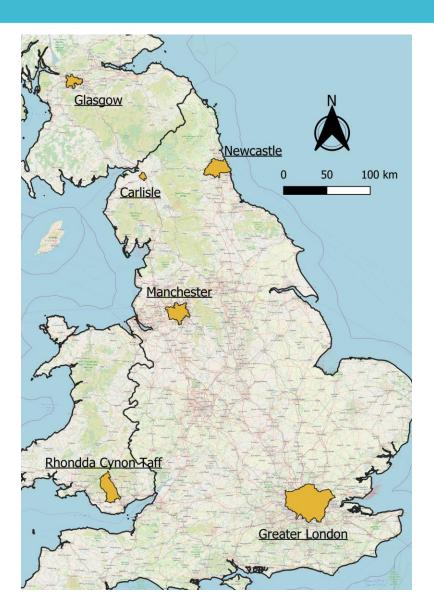
CLIMATE

Observations from crowd-source data

UK CLIMATE RESILIENCE PROGRAMME

View on Queen Victoria road at 16:40 Stress Met Office

UK CLIMATE RESILIENCE PROGRAMME

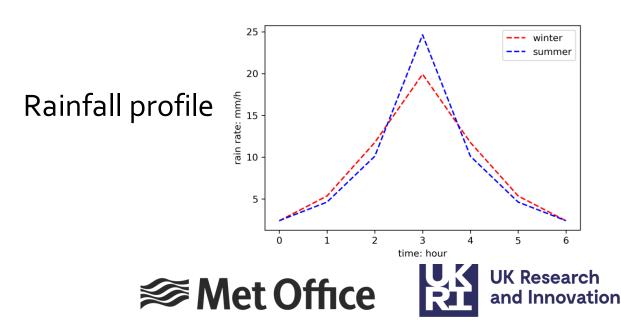

View on a bridge over A167 road

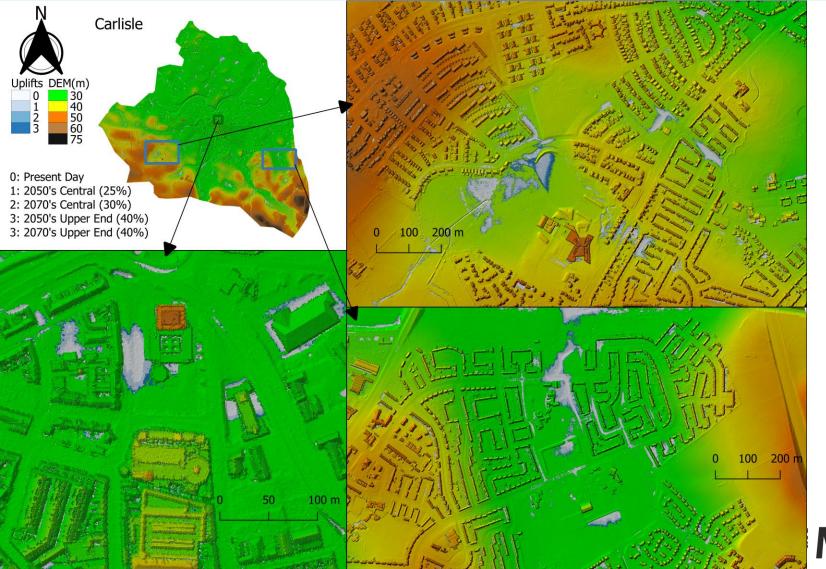
Research sites

City	Area (km²)	Res	Valid cells (Million)
Newcastle	411	2m	102.8
Glasgow	176	5m	7.0
Manchester	387	5m	15.5
Carlisle	47	ım	47.0
London	1595	5m	63.8
Rhondda	424	5m	17.0

Rainfall scenarios

UK CLIMATE RESILIENCE PROGRAMME


- Return periods
 - 30 years, 100 years
- Durations
 - 1-hour, 3-hour, 6-hour
- Ensemble members
 - 2050 Central estimate (50th)
 - 2050 Upper estimate (95th)
 - 2070 Central estimate (50th)
 - 2070 Upper estimate (95th)
- Number of simulations
 - 30 for each city
 - 180 in total

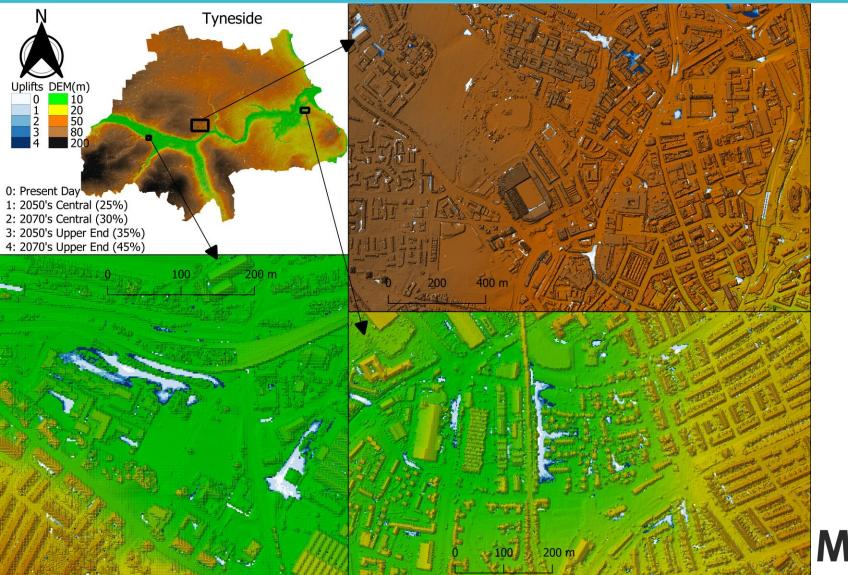

Flood Estimation Handbook Web Service

FEH 2013 DDF

Micro-FSR (Flood Study Report) formula

Simulated results

Carlisle: 1 hour 100 year

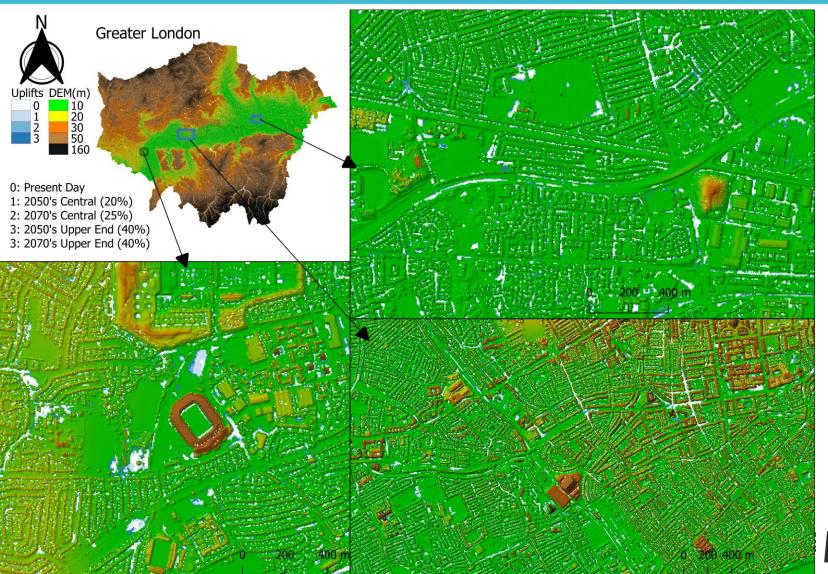


UK

CLIMATE RESILIENCE

Simulated results

Newcastle: 6 hour 100 year



Simulated results

Greater London: 3 hour 100 year

UK CLIMATE RESILIENCE PROGRAMME

or

	Rainfall uplifts								
Flood Depth (>=, m)	0%	25%	30%	35%	40%				
	Inundated area(m ²)		Inundation						
2	11.0	154.55	190.91	290.91	400				
1	635.0	234.96	304.57	387.87	509.92				
0.5	10744.0	151.68	188.65	230.58	276.64				
0.3	50539.0	139.08	173.03	209.34	246.56				
0.2	154960.0	107.87	132.32	156.79	182.88				
Carlisle	results (1hr 3	oyr)		Met Office	UK Researce and Innova				

UK CLIMATE RESILIENCE PROGRAMME

	Rainfall uplifts							
Flood Depth (>=, m)	0%	25%	30%	40%				
	Inundated area(m ²)	Inundation increase (%)						
2	45.0	373.33	484.44	697.78				
1	3161.0	166.43	207.28	312.81				
0.5	35803.0	124.89	156	222.51				
0.3	157312.0	90.68	111.51	154.79				
0.2	399982.0	70.57	85.08	114.51				

Carlisle results (1hr 100yr)

UK CLIMATE RESILIENCE PROGRAMME

City	City 2050		0s C 2050		207)'s C	2070's UE	
Carlisle	25%	90.68%	40%	154.79%	30%	111.51%	40%	154.79%
Glasgow	25%	48.31%	40%	75.75%	30%	57.47%	40%	75.75%
Greater London	20%	60.90%	40%	114.61%	25%	76.10%	40%	114.61%
Greater Manchester	25%	83.62%	40%	137.22%	30%	101.69%	40%	137.22%
Rhondda	25%	41.93%	40%	65.51%	30%	48.89%	40%	65.51%
Tyneside	25%	81.29%	40%	137.44%	30%	99.48%	40%	137.44%

1hr 100yr, inundation >= 0.3m

UK CLIMATE RESILIENCE PROGRAMME

City	205	0s C	2050's UE		2070's C		2070's UE	
Carlisle	25%	139.08%	35%	209.34%	30%	173.03%	40%	246.56%
Glasgow	25%	68.38%	35%	96.25%	30%	82.26%	40%	110.66%
Greater London	20%	80.44%	35%	154.56%	25%	103.94%	40%	181.60%
Greater Manchester	25%	111.99%	35%	168.84%	30%	139.77%	40%	199.29%
Rhondda	25%	52.46%	35%	73.59%	30%	63.24%	40%	83.86%
Tyneside	25%	91.12%	35%	146.40%	30%	110.84%	40%	173.65%

1hr 30yr , inundation >= 0.3m

Conclusions

- JBA and Loughborough results both indicate that there will be increased flood impacts in urban areas as a result of the changes
- Different input data and modelling methodologies result in some (unexplored) variation in the results
- Maps showing extent of flooding changes may not tell the full story
- More in-depth analysis could point to impacts related to properties and critical infrastructure affected, damage costs and the role modelling methodology plays in estimating impacts

Questions

Contact details

Website: www.ukclimateresilience.org

Twitter: @UKCRP_SPF

YouTube: UK Climate Resilience programme

The UK Climate Resilience programme is supported by the UKRI Strategic Priorities Fund. The programme is co-delivered by the Met Office and NERC on behalf of UKRI partners AHRC, EPSRC, ESRC.

