SEARCH: Sensitivity of estuaries to climate hazards

Peter Robins, Charlotte Lyddon, Tom Coulthard, Andrew Barkwith, Matt Lewis, Greg Vasilopoulos, Chien Nguyen, Ankita Bhattacharya, Jonathan Tinker, Rachel Perks, Gemma Coxon

GFS 0.25⁴ Valid: Sat 9 Dec 18:00 UTC

Overview - Precip, Cloud, Temperature & Pressure

0.2 0.6

Flooding globally:

3 million deaths, >\$1 trillion in economic losses.

<u>UK</u>:

Drivers and *pathways* of flooding poorly understood. Historic flooding is undocumented.

Impacts: 1-in-6 properties (3 million) at risk. Annual damages >£540M.

Human health and food security risks, mental health impacts poorly understood.

Future risk:

- *Drivers:* SLR, sea surface variability, river flows, rainfall, groundwater
- Pathways: land use, water management, defenses, morphology
- *Impacts:* resilience, perceptions, mitigation

Storm Ciara: Conwy estuary, February 2020 ... the perfect storm?

"Two or more (extreme) events occurring simultaneously that lead to extreme impacts"

 Compound flooding in UK: South UK coasts (2013/14) Cumbria (2015) Conwy (2020)
[Svensson & Jones 2002, 2004, 2006; Hendry et al. 2018]

Storm Ciara

Questions

Q1: How likely and how common is compound flooding across Britain? Q2: Can we establish the drivers of flooding and flood thresholds? Q3: How will flood risk change?

15-min river discharge data (126 gauges) $Q_{max} > 50 \text{ m}^3/\text{s}$ 1984 – 2013 (30 yrs)

15-min sea level data (27 tide gauges) 1984 – 2013 (30 yrs)

Why use 15-minute data rather than daily mean?

The short windows (<24 hrs) at most sites indicated that for most catchments in Britain sub-daily data is needed to robustly assess the propensity for compound events.

Method: River (Q) peaks over threshold + largest skew surge (S) Kendall's rank correlation; events per season where Q and S > 95th percentile

Storm hydrograph window duration (20.25 hrs)

Lyddon et al. 2022. Historic spatial patterns of compound flood events in UK estuaries. Reviewed in Estuaries & Coasts

Also: Harrison etal 2021; Robins etal 2021

0 1.5

Kilometers

Model calibration against 2021 observations

Flood validation against 2015-2016 data

Conwy - maximum water depths

Conwy - flood probability

Can we establish the drivers of flooding and flood thresholds?

Can we establish the drivers of flooding and flood thresholds?

Can we establish the drivers of flooding and flood thresholds?

Clustered events?....

Is compound flooding likely to change?

- 12 of the 60 km HadGEM3-GC3.0 GCM PPE for RCP8.5 were downscaled to a 2.2 km local Convection Permitting Model.
- Rainfall data were used to force a distributed hydrological model (DECIPHeR) of the **Dyfi Estuary**, (Coxon et al. 2019).
- 10,000 calibration runs forced with observed rain and evap. to simulate hourly discharge. 100 best parameter sets were used with UKCP18 data to simulate baseline, near and far future discharge.

- 12 of the 60 km HadGEM3-GC3.0 GCM PPE for RCP8.5 were applied to 12km regional climate simulations.
- These were used to drive the regional 7 km NEMO AMM7 (1980 – 2080).
- Model simulations are de-tided using a Doodson filter to generate a residual surge.

Is compound flooding likely to change? – return periods

Is compound flooding likely to change? – future changes in compound events

Potential groundwater impacts

Conwy Catchment Area

Properties	Conwy
Catchment Area	345 km ²
Rainfall (50 years average)	3700mm
Base Flow Index	0.27
Geology	Thick sequence of mudstones
Permeability of Bed Rock	Very low
Superficial deposits	Clay, Alluvium, Till
Groundwater potential of superficial deposits	Moderate
Aquifer systems	Groundwater occurs within shallow weakly permeable aquifers

Geological Map of Wales Source-BGS

Peak baseflow, runoff and river flow events (1990-2020)

Summary

Historic compound event analysis:

• First sub-daily compound flooding analyses (Lyddon et al. 2022).

Inundation modelling:

- Estuary DEMs built at 20-50m res for 13 estuaries (not Thames).
- Full catchment DEMS built for Clyde, Conwy, Dyfi, Humber).
- CAESAR-Lisflood inundation models running for all estuaries.
- CL-groundwater model developed for Dyfi, Conwy, Clyde.
- New method for validation of flooding events (Conwy, Dyfi), paper in-prep
 - New sea-level sensors, Satellite SAR images, inundation records, news articles
- Established tipping points and probabilities of flood drivers in Conwy, Dyfi, Humber (Harrison et al. 2021; Robins et al. 2022)
 - Working on joint-probabilities...

Climate change:

- Collated sea-level and river flow projections downscaled from HadGEM3-GC3.0
- Produced future return periods and compound event analysis (paper in-prep)

